miércoles, 8 de diciembre de 2010

MUERTE CELULAR

*MECANISMOS DE LESIÓN CELULAR
1.- Lesión isquémica o hipóxica
2.- Lesión por radicales libres
3.- Lesión química
4.- Lesión por agente infeccioso
*CLASIFICACIÓN DE MECANISMOS DE LESIÓN CELULAR
*CONCEPTO DE DAÑO CELULAR
Concepto
La acción de una noxa sobre una célula puede producir una alteración celular o daño que puede ser compensado y provocar cambios estructurales transitorios, todas los cuales regresan una vez que cesa la acción de la noxa. A este daño se le denomina daño celular subletal o reversible. Si los mecanismos de adaptación son superados, entonces hay lesiones celulares y subcelulares permanentes, irrecuperables y letales para la célula y se habla de daño celular letal o irreversible, antesala de la muerte celular (figura 2.1). Cuanto más grave es el daño celular tanto mayor es la probabilidad -sin llegar a la certeza- de que la célula no se recupere. Desde este punto de vista, el proceso que se desarrolla hasta la necrosis celular se manifiesta bajo el microscopio de luz en alteraciones que, aunque en algún momento indiquen daño celular grave, en principio son reversibles y por lo tanto no permiten predecir con certeza que sobrevendrá la fase irreversible.
Existe un continuo entre las lesiones reversibles e irreversibles y no hay un marcador funcional ni morfológico que permita predecir el paso de la primera fase a la segunda (punto sin retorno). Las alteraciones morfológicas del daño celular son aparentes sólo después que un sistema bioquímico crítico se ha alterado. En general, las manifestaciones del daño irreversible toman más tiempo en desarrollarse que las del daño reversible.
Las reacciones de la célula a una noxa dependen del tipo de noxa, su duración e intensidad. Por ejemplo, pequeñas dosis de una toxina o isquemia de corta duración pueden producir un daño reversible, en tanto dosis más grandes o una isquemia más prolongada pueden resultar en muerte celular o en daño irreversible que lleva a la muerte celular. El tipo, estado y adaptabilidad de la célula afectada también determinan las consecuencias del daño. El estado nutritivo y hormonal así como las necesidades metabólicas son importantes en respuesta al daño.
El daño celular puede ser agudo o crónico, siendo el primero resultado de una acción muy corta de un agente nocivo y el segundo, la persistencia de la acción de éste. En este último caso existen dos posibilidades: o la célula se muere o se adapta a la situación patológica. La adaptación celular se traduce en atrofia, hipertrofia, metaplasia, displasia, acumulación intracelular de diversas sustancias y, según algunos, también neoplasia. El daño agudo puede ocasionar, por ejemplo, para el caso de la isquemia, necrosis celular, pero cuando la isquemia es relativa y crónica, se produce atrofia.
Los agentes causantes de daño celular pueden corresponder, según su naturaleza, a cualquiera de los tratados en el capítulo 1, en la sección sobre etiología general. Las células y sustancia intercelular se afectan en diverso grado, desde leves perturbaciones del metabolismo celular, hasta la muerte celular con cese definitivo del proceso metabólico. En la evolución del daño celular, la alteración de la función celular puede ser importante, pero persisten en todo caso siempre las funciones vitales como respiración y conservación de la permeabilidad selectiva de las membranas.
*DAÑO CELULAR REVERSIBLE
Las alteraciones celulares reversibles se producen frecuentemente en el citoplasma y se acompañan de un trastorno del metabolismo celular. Ellas constituyen una gran parte de la patología celular.
En la aparición anormal de substancias químicas en el citoplasma, clásicamente se hacía la distinción entre infiltración y degeneración. En la primera, el material se atribuía a la penetración de una substancia desde el exterior de la célula; en la segunda, a la transformación química del propio citoplasma. Degeneración significaba, además y en particular, la aparición de una substancia por transformación de material celular. Estos términos no debieran usarse por la imposibilidad de distinguir estos mecanismos. La idea de degeneración en este sentido puede sustentarse hoy en la degeneración Walleriana en relación con las vainas de mielina y en la degeneración mixoide de la matriz extracelular. En la primera, en la fase sudanofílica aparecen triglicéridos que no son componentes de la mielina y que no se explican por la penetración desde el exterior sino por transformación de la mielina. En el segundo, los mucopolisacáridos ácidos que se acumulan en la matriz extracelular tampoco proceden del exterior, sino que se ponen de manifiesto al perder su unión con proteínas. En la práctica, sin embargo, es muy difícil saber por la sola observación de una lesión, su patogenia y la causa precisa que la ocasionó.
Este análisis de la célula enferma ha permitido identificar directamente alteraciones relacionadas con el metabolismo del agua, proteínas, lípidos, hidratos de carbono y pigmentos. Esto puede realizarse hoy día en forma bastante simple con cualquier microscopio de luz y con técnica histológica e histoquímica muy elemental. En cambio, el uso de nuevos métodos en histopatología, como el microscopio electrónico de transmisión y de barrido, procedimientos inmunohistoquímicos, etcétera, han permitido reconocer en la ultraestructura celular, alteraciones que podríamos clasificar mejor de acuerdo con los organelos o compartimientos predominantemente comprometidos. Con fines didácticos podrían clasificarse las alteraciones asociadas a daño celular según los compartimientos u organelos donde ellas ocurren, pero la mayoría de las veces hay participación simultánea o secundaria de diversos compartimientos. Fuera de este criterio ultraestructural, se atiende a la naturaleza química cuando se trata de sustancias de aparición anormal dentro de la célula. Las alteraciones morfológicas asociadas al daño celular reversible comprenden: tumefacción celular o tumefacción turbia, alteración hidrópica o transformación hidrópica y esteatosis.
*DAÑO CELULAR IRREVERSIBLE
El daño irreversible se traduce morfológicamente en muerte celular, de la cual reconocemos dos tipos: necrosis y apoptosis
*APOPTOSIS

Es una forma de muerte celular caracterizada por hipereosinofilia y retracción citoplasmáticas con fragmentación nuclear (cariorrexis) desencadenada por señales celulares controladas genéticamente. Estas señales pueden originarse en la célula misma o de la interacción con otras células. La apoptosis tiene un significado biológico muy importante, que es opuesto al de la mitosis en la regulación del volumen tisular. La apoptosis contribuye a dar la forma a los órganos durante la morfogénesis y elimina células inmunológicamente autorreactivas, las células infectadas y las genéticamente dañadas, cuya existencia es potencialmente dañina para el huésped. La apoptosis no presenta las fases de necrobiosis, necrofanerosis y necrolisis. Los signos morfológicos de la apoptosis son muy semejantes a los de la necrofanerosis. En la apoptosis las alteraciones nucleares representan los cambios más significativos e importantes de la célula muerta y los organelos permanecen inalterados incluso hasta la fase en que aparecen los cuerpos apoptóticos. En la apoptosis destacan las alteraciones morofológicas del núcleo frente a las del citoplasma, a la inversa de lo que ocurre en la necrosis en general. A diferencia de la apoptosis, la necrosis es una forma de muerte celular que resulta de un proceso pasivo, accidental y que es consecuencia de la destrucción progresiva de la estructura con alteración definitiva de la función normal en un daño irreversible; este daño está desencadenado por cambios ambientales como la isquemia, temperaturas extremas y traumatismos mecánicos.
La apoptosis se ha conocido con otros nombres: cuerpos de Councilman (hígado), cuerpos cariolíticos (criptas intestinales), cuerpos tingibles (ganglio linfático), cuerpos de Civatte (piel), cuerpos hematoxilínicos (varios) Al microscopio de luz, las células apoptóticas se observan como células pequeñas, hipereosinófilas, de citoplasma redondeado u oval con o sin material nuclear basófilo. El citoplasma en fases más avanzadas aparece fragmentado, que varían de tamaño considerablemente. La cromatina aparece como masas hiperbasóflas, densas. La fagocitosis de los cuerpos apoptóticos no induce a los macrófagos para que estimulen una respuesta inflamatoria.
Al microscopio electrónico, en la fase temprana hay condensación de la cromatina, para formar masas crescénticas uniformemente densas, delimitadas; el nucleólo presenta disposición periférica de la cromatina con formación de gránulos osmiofílicos hacia el centro del núcleo; el núcleo fibrilar proteico forma una masa granular compacta usualmente adosada a la superficie interna de la cromatina condensada. Los desmosomas aparecen desestructurados y estructuras de superficie como microvellosidades están desorganizadas. El volumen celular está disminuido y la densidad celular aumentada, los organelos citoplasmáticos aparecen compactos y la silueta de la célula (citoplasma y núcleo) está convoluta. En la fase avanzada el núcleo se observa fragmentado y con condesación de la cromatina.
En el citoplasma hay agregación de filamentos intermedios, formación de grumos de proteínas ribosomales, agrupación concéntrica de retículo endoplásmico rugoso, las células con abundante citoplasma forman prolongaciones muy prominentes. Finalmente éstas se separan para formar los fragmentos denominados cuerpos apoptóticos. In vivo, estos cuerpos son rápidamente fagocitados por células epiteliales adyacentes, fagocitos mononucleares e incluso células neoplásicas. Esta fagocitosis y degradación rápida pueden explicar la ausencia de inflamación en este fenómeno. Esta secuencia de alteraciones ocurre muy rápidamente: la retracción citoplasmática y la aparición de prolongaciones sucede en minutos y los cuerpos apoptóticos son digeridos en algunas horas.
La fragmentación rápida y regular del ADN es característica. Hay fragmentación inicialmente en trozos de 300 pares de bases y luego de 50 pares de bases con división del ADN internucleosomal de doble hebra. Esto origina fragmentos de 186 pares de bases y múltiplos de ellos (multímeros), lo cual se observa en electroforesis en gel de agarosa como el llamado "patrón en escalera". La fragmentación se produce por activación de endonucleasas dependientes de calcio. Muchos de los cambios celulares se atribuyen a la acción de enzima convertidora de interleuquina 1b y granzima B. La transglutaminasa tisular produce agregados proteicos subplasmalemales, que evitan la liberación de enzimas intracelulares particularmente dañinas.
El aumento de la proteína p53 se asocia a una detención del ciclo celular favoreciendo la reparación de ADN dañado, que de no ser posible termina con la eliminación de la célula. c-myc induce apoptosis y aunque hay expresión aumentada, ésta pareciera no ser esencial para desencadenar por sí sola apoptosis. La expresión de bcl-2 confiere resistencia de las células a la apoptosis y así promueve la sobrevivencia celular y por lo tanto favorece las mutaciones y la transformación neoplásica. Apoptosis ocurre en desarrollo normal, diferenciación celular terminal, recambio celular normal en tejido adultos, pérdida celular cíclica en tejido maduros, involución, atrofia patológica en tejidos hormono-dependientes y obstrucción mecánica, y regresión de hiperplasia, inmunidad celular, neoplasia, quimioterpia y toxinas. Se ha hablado de muerte celular programada. Esto se debe a que algunas células aparecen como programadas a morir en un cierto momento como parte de la función o desarrollo normal de los tejidos. Por ejemplo, el desarrollo embrionario (delección de órganos transitorios, conformación de órganos como en metamorfosis, fusión de fisuras y surcos como el paladar, etc), recambio celular normal como en epidermis y maduración normal de células como linfocitos en centros germinales de linfonodos.
*MUERTE CELULAR
Durante el desarrollo y también en estado adulto, hay numerosas células que degeneran y mueren. La muerte celular es un proceso fisiológico-patológico que conduce a la eliminación celular y que tiene una función esencial en la homeostasis de los tejidos y en los estados patolóxicos.
La muerte celular pode ocurrir por:
Necrosis.
Apoptosis.

A) Necrosis: es un proceso pasivo que no requiere una activa participación de la célula y acontece cuando la célula se encuentra ante condiciones extremas no fisiológicas. El origen de todos los desórdenes necróticos es un desequilibrio osmótico. La permeabilidad de la membrana plasmática se altera, produciendose entrada del agua, por lo que se produce un aumento de volumen.
La cromatina nuclear forma pequeños agregados, el RE y las mitocondrias se dilatan por la entrada de agua. Los ribosomas se desorganizan y los lisosomas se rompen.
Como etapa final, los orgánulos estallan, la membrana plasmática y la envoltura nuclear se segrega y el contenido intracelular se vierte al exterior promoviendo una respuesta inflamatoria.
b) Apóptosis: el término apoptosis se utiliza cómo similar a la muerte celular programada, que sería un proceso de suicidio celular específico que implica un encogimiento y condensación de la célula. El citoesqueleto se colapsa, la envoltura nuclear se rompe y el ADN nuclear se fragmenta. La superficie celular se altera, presentando propiedades que provocan que la célula moribunda sea fagocitada inmediatamente, de manera que no se produce ningún vertido del contenido celular.

Son muchos los procesos donde es necesaria la apoptosis, como por ejemplo, durante el desarrollo embrionario fetal y post-fetal, mueren por apoptosis desde blastómeros hasta neuronas y abundan en fenómenos donde hay reabsorción de algunas estructuras como como por ejemplo la reabsorción de la cola en anfibios y la reabsorción de las membranas interdigitales.
También intervienen en los procesos de metamorfosis o en los mecanismos de renovación de algunos tejidos, como son el timo, la próstata, el intestino, el hígado, ganglios linfáticos, glándula mamaria y ovario.
En contraste con la necrosis, la apoptosis no es un proceso pasivo, requiriendo la activa participación de la célula y se desencadena cómo una respuesta fisológica a la influencia del entorno mediada por una cascada de traducción de señales desde la superficie celular incluso el núcleo para poner en marcha un nuevo programa genético.
La diferencia entre apoptosis y muerte celular es que en esta última las células están programadas para morir desde un principio (cola de anfibio) mientras que en la apoptosis la célula responde a estímulos locales específicos de un momento determinado.

No hay comentarios:

Publicar un comentario